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Summary
This note presents two interrelated techniques based on projection matrices for active port-

folio management. First, it shows how to derive how to use a projection matrix to filter a
view or weight vector so that the resulting portfolio is neutral with respect to a given set of
systematic factors. Second, it shows how to invert the process to decompose an existing port-
folio’s holdings into a benchmark (passive) component, systematic (factor or sector) tilts, and
an idiosyncratic (stock-specific) residual.

1 Factor Neutrality via Projection

Assume we have a set of N stocks and a factor model with k systematic factors represented by the
N × k matrix F . Each column of F contains the factor loadings for a specific factor across the N
stocks.
A projection matrix that projects any vector onto the column space of F is given by:

PF = F (F ′F )−1F ′.

For any vector x ∈ RN , PFx is the component of x in the span of F . Therefore, the component
orthogonal to the factor space is:

x⊥ = x− PFx =
(
I − F (F ′F )−1F ′)x.

Defining
P = I − F (F ′F )−1F ′,

we see that P is the projection matrix onto the space orthogonal to the column space of F . In
other words, Px extracts the part of x that is independent of the factors in F .
If you have a view vector V that represents forecasted excess returns (or any signal) for each stock,
applying the projection matrix gives:

Vidiosyncratic = P V,

which isolates the portion of your view that is uncorrelated with the systematic factors. Similarly,
if you have a portfolio weight vector W that may contain unwanted factor exposures, projecting W
yields:

Widiosyncratic = P W.

This “filtered” weight vector is the pure stock-picking component with zero exposure to the factors
in F .
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1.1 Scaling Factor-Neutral Weights to Meet a Tracking Error Target

Suppose you have already constructed a factor-neutral active weight vector W ∗ and you wish to
adjust its risk such that the portfolio achieves a target tracking error, TEtarget. Let Σ be the
covariance matrix of stock returns. The tracking error of the active portfolio is:

TE(W ∗) =
√

W ∗′ΣW ∗.

To scale the active bets, introduce a scalar multiplier α so that the new active weights become:

Wa = αW ∗.

We choose α to satisfy:

α
√

W ∗′ΣW ∗ = TEtarget, α =
TEtarget√
W ∗′ΣW ∗

.

In many practical cases, the overall portfolio is constructed as a combination of a baseline (or
benchmark) portfolio W0 and an active tilt W ∗. Then the final portfolio becomes:

W = W0 + αW ∗.

2 Inverse Operation: Decomposing a Portfolio’s Weights

Given an existing portfolio with weight vector W , we may decompose W into its systematic and
idiosyncratic components. Suppose Wb represents the benchmark weights.

1. Active Component: A = W −Wb.

2. Systematic (Factor) Component: Afactor = PF A = F (F ′F )−1F ′A.

3. Idiosyncratic Component: Aidiosyncratic = A−Afactor = (I − PF )A.

Thus, the portfolio can be written as:

W = Wb +Afactor +Aidiosyncratic.
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