Projection-Based Methods for Achieving and Diagnosing Factor Neutrality

Grant Holtes

April 21, 2025

Summary

This note presents two interrelated techniques based on projection matrices for active portfolio management. First, it shows how to derive how to use a projection matrix to filter a view or weight vector so that the resulting portfolio is neutral with respect to a given set of systematic factors. Second, it shows how to invert the process to decompose an existing portfolio's holdings into a benchmark (passive) component, systematic (factor or sector) tilts, and an idiosyncratic (stock-specific) residual.

1 Factor Neutrality via Projection

Assume we have a set of N stocks and a factor model with k systematic factors represented by the $N \times k$ matrix F. Each column of F contains the factor loadings for a specific factor across the N stocks.

A projection matrix that projects any vector onto the column space of F is given by:

$$P_F = F \left(F'F \right)^{-1} F'.$$

For any vector $x \in \mathbb{R}^N$, $P_F x$ is the component of x in the span of F. Therefore, the component orthogonal to the factor space is:

$$x_{\perp} = x - P_F x = (I - F (F'F)^{-1}F')x$$

Defining

$$P = I - F (F'F)^{-1}F',$$

we see that P is the projection matrix onto the space orthogonal to the column space of F. In other words, Px extracts the part of x that is independent of the factors in F.

If you have a view vector V that represents forecasted excess returns (or any signal) for each stock, applying the projection matrix gives:

$$V_{\rm idiosyncratic} = P V,$$

which isolates the portion of your view that is uncorrelated with the systematic factors. Similarly, if you have a portfolio weight vector W that may contain unwanted factor exposures, projecting W yields:

$$W_{\rm idiosyncratic} = P W.$$

This "filtered" weight vector is the pure stock-picking component with zero exposure to the factors in F.

1.1 Scaling Factor-Neutral Weights to Meet a Tracking Error Target

Suppose you have already constructed a factor-neutral active weight vector W^* and you wish to adjust its risk such that the portfolio achieves a target tracking error, $\text{TE}_{\text{target}}$. Let Σ be the covariance matrix of stock returns. The tracking error of the active portfolio is:

$$\mathrm{TE}(W^*) = \sqrt{W^* \Sigma W^*}$$

To scale the active bets, introduce a scalar multiplier α so that the new active weights become:

$$W_a = \alpha W^*.$$

We choose α to satisfy:

$$\alpha \sqrt{W^{*'} \Sigma W^{*}} = \mathrm{TE}_{\mathrm{target}}, \qquad \alpha = \frac{\mathrm{TE}_{\mathrm{target}}}{\sqrt{W^{*'} \Sigma W^{*}}}.$$

In many practical cases, the overall portfolio is constructed as a combination of a baseline (or benchmark) portfolio W_0 and an active tilt W^* . Then the final portfolio becomes:

$$W = W_0 + \alpha W^*.$$

2 Inverse Operation: Decomposing a Portfolio's Weights

Given an existing portfolio with weight vector W, we may decompose W into its systematic and idiosyncratic components. Suppose W_b represents the benchmark weights.

- 1. Active Component: $A = W W_b$.
- 2. Systematic (Factor) Component: $A_{\text{factor}} = P_F A = F(F'F)^{-1}F'A$.
- 3. Idiosyncratic Component: $A_{idiosyncratic} = A A_{factor} = (I P_F)A$.

Thus, the portfolio can be written as:

$$W = W_b + A_{\text{factor}} + A_{\text{idiosyncratic}}.$$