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Summary

This investigation evaluates the impact of different covariance matrix estimation methods
in the context of portfolio optimisation. Focused on the role of covariance matrices, the analysis
highlights limitations in the widely used sample covariance matrix. The examined alternative
estimators are diagonal, constant correlation, simple shrinkage, constant correlation shrinkage,
Ledoit-Wolf shrinkage, and oracle approximating shrinkage estimators. Notably, the Ledoit-
Wolf shrinkage estimator outperforms others, demonstrating its effectiveness in optimizing
portfolio returns across diverse asset universes. The key takeaway is the sample covariance
matrix is generally prone to error, superior estimators exist which should be considered, and
the difference between estimators can cause a material difference in returns when using the
matracies in portfolio optimisation.

1 Motivation

1.1 Importance of covariance matrices

Covariance matrices are pivotal in finance, serving as a key input for portfolio management, risk
assessment, and asset pricing. In portfolio construction, understanding the relationships between
different assets is essential for achieving diversification and minimizing overall risk. Modern Portfolio
Theory relies on covariance matrices to optimize portfolios based on the trade-off between expected
return and volatility. Covariance matrices are also used in asset pricing models, aid in pricing
derivatives accurately, and for risk management, facilitating the measurement of portfolio risk
through metrics like VaR and CVaR. Given the wide range of models that require covariance
matrices as an input and the sensitivity of the models to the input matrices, their estimation
methods deserve some interrogation.

1.2 Issues with the sample covariance matrix

The obvious (or naive) choice to estimate covariance is the sample covariance matrix. This has a
number of key issues that can make it unsuitable for use, including:

Error: While the estimator is unbiased, it is based on a finite sample and so does exhibit estimation
error. This error can be significant, particularly when dealing with limited sample sizes, and it
affects the accuracy of statistical inferences and predictions based on the estimated covariance
matrix.
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Sensitivity to noise: The sample covariance matrix is highly sensitive to outliers or extreme
values in the data. Outliers can have a disproportionate impact on the estimated covariance,
leading to distorted results

Singularity and Inversion: When the number of variables is equal to or greater than the number
of observations, the sample covariance matrix becomes singular (non-invertible).

This paper will deal primarily with the first two issues of error and sensitivity.

2 Overview of available estimators

There are a range alternative approaches to covariance matrix estimation

Simplified sample estimators: These methods aim to produce a better matrix by applying sim-
plifying assumptions. These include the diagonal covariance matrix, which assumes all vari-
ables are independent, and the constant correlation matrix, which assumes all variables have
the same correlation.

Shrinkage estimators: Shrinkage estimators aim to produce more useful covariance matrices by
combining 2 estimates: A unbiased but high error estimate, F , usually the sample covariance
matrix, and a biased but low error estimate, S. These are combined in a weighted sum

Σ = (1− δ)S + δF

The shrinkage amount δ can be either a given input or be optimised by the estimator.

Time series estimators: As finacial data are often time series, these models aim to incorporate
the information provided by the relationships between time periods into the estimated covari-
ance matrix. The methods include the Exponentially Weighted Moving Averages (EWMA)
model and GARCH (Generalized Autoregressive Conditional Heteroskedasticity) model.

Sparse covariance estimators: When dealing with high-dimensional data, methods like graph-
ical lasso (L1 regularization) are used to estimate a sparse covariance matrix, assuming that
most of the correlations are zero.

Maximum likelihood estimators: The Maximum Likelihood Covariance Estimator (MLCE) is
an approach that seeks to find the covariance matrix that maximizes the log likelihood of the
observed data. As with the sample covariance matrix, MLCE is an unbiased estimator, but is
known to be sensitive to outliers in small sample sizes and estimation error when the number
of variables exceeds the number of observations.

This investigation will focus on simplified sample estimators and shrinkage estimators.

3 Quantitative comparison

The impact of estimator choice is evaluated in the context of the use of the estimated matrix in
optimising a portfolio of individual equities.
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3.1 Experiment Design

The impact of the different covariance measures on the portfolio selection process is measured
through a highly simplified simulation of an investing process with the following steps:

1. The investor accesses return data for their given asset universe, until the current as-at date.

2. The investor calculates the expected returns and and the covariance matrix using the method
being tested.

3. The investor determines their portfolio weights using a simple optimiser, with the objective
of maximising Sharpe ratio.

4. The as-at date is advanced by the simulation time step of one month, with the portfolio value
incriminating by the realised return for the period.

This simulation is run for each of the in-scope covariance measures and for a range of asset universes,
being the top-n members of the SP500. Using the current largest members of an index as a investing
universe naturally biases the analysis, but this bias is assumed to affect all of the covariance measures
equally and so can be ignored.

4 Methods to be analysed

4.1 Sample covariance matrix

The sample covariance matrix is also tested and will act as the baseline that the other methods can
be compared against. This is given by Equation 1, where X is a matrix of row oriented observations
and X is the sample mean vector across all observations.

S =
1

n− 1
(X −X)(X −X)′ (1)

This is implemented by the python code below

def sample_covariance_matrix(X):

n = X.shape[1] - 1 # degrees of freedom adj

avg = np.average(X, axis=1) # Get average of each column

X = X - avg[:,np.newaxis] # Center data on 0.

c = np.dot(X, X.T) # Get sum of elementwise differences

c *= np.true_divide(1, n)

return c

4.2 Diagonal Covariance Matrix

The diagonal covariance matrix simply sets all the non-diagonal elements of the sample covariance
matrix to zero. This has the effect of assuming that all variables are independent, with insignificant
correlations. Variance (diagonal) elements are left unchanged.

3



def diagonal_covariance_matrix(X):

F = sample_covariance_matrix(X)

n = F.shape[0]

return F * np.identity(n)

4.3 Constant Correlation Covariance Matrix

The constant correlation covariance matrix re-scales each non-diagonal element such that every pair
of variables have the same correlation. The chosen correlation is the average correlation, calculated
as the average of the non-diagonal elements of the sample correlation matrix. Variance (diagonal)
elements are left unchanged.

def constant_correlation_estimator(X):

F = sample_covariance_matrix(X)

n = F.shape[0]

# Calculate correlation

corr_ = np.ones((n,n))

for i in range(n):

for j in range(n):

corr_[i,j] = F[i,j] / (np.sqrt(F[i,i] * F[j,j]))

# Get non-diagonal elements

indicies = np.where(~np.eye(n,dtype=bool))

avg_corr = np.mean(corr_[indicies])

# Scale covariances

S = np.ones((n,n))

for i in range(n):

for j in range(n):

if i != j: # Scale off-diagonal componants

k = avg_corr / corr_[i,j]

S[i,j] = F[i,j] * k

else:

S[i,j] = F[i,j] # Leave diagonal unchanged

return S

4.4 Simple Shrinkage Estimator

The simple shrinkage estimator interpolates linearly between the values of the values of the sample
covariance matrix F and the diagonal covariance matrix S.

Σ = (1− δ)S + δF (2)

A shrinkage factor δ of 0.5 is used.

def simple_shrinkage_estimator(X, shrinkage = 0.5):

F = sample_covariance_matrix(X)
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S = diagonal_covariance_matrix(X)

return (1-shrinkage)*F + shrinkage*S

4.5 Constant correlation shrinkage estimator

This estimator is similar to the simple shrinkage estimator, but rather than shrinking towards the
diagonal covariance matrix, it uses the constant correlation matrix.

4.6 Ledoit-Wolf Shrinkage Estimator

The Ledoit-Wolf estimator is an extension of the simple shrinkage estimator where an optimal
shrinkage factor is estimated based on the input data. The estimator is designed to be computa-
tionally efficient and provides a robust estimate, especially when the number of variables is large
relative to the number of observations.

from sklearn.covariance import LedoitWolf

def ledoit_wolf_shrinkage_estimator(X):

cov = LedoitWolf().fit(X.T)

return cov.covariance_

The scikit-learn implementation is used for simplicity.

4.7 Oracle Shrinkage Estimator

Similar to the Ledoit-Wolf estimator, the Oracle estimator extends the simple shrinkage estimator
by estimating an optimal shrinkage factor. While the Ledoit-Wolf method typically uses a diagonal
matrix as the target, assuming most variables are uncorrelated, the Oracle method allows for more
flexibility by incorporating a target matrix derived from prior information or assumptions about the
data structure. The Oracle Covariance Estimator also explicitly optimizes the shrinkage parameter
to minimize the mean squared error, taking into account the target matrix. These extensions make
it more computationally intensive that the Ledoit-Wolf method.

from sklearn.covariance import OAS

def ledoit_wolf_shrinkage_estimator(X):

cov = OAS().fit(X.T)

return cov.covariance_

The scikit-learn implementation is used for simplicity.

4.8 Out of scope methods

The below methods were not analysed, but would be interesting to include in any further analysis.
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Factor Models: Factor models are a class of models used in covariance matrix estimation that
assume the observed variables can be decomposed into a linear combination of common factors
and idiosyncratic, or specific, factors. The factor model is described as a linear regression of
the assetsX on their means µ and the common factors F . The residuals U are the idiosyncratic
factors

X = µ+BF + U (3)

The covariance matrix of the observed variables X can be expressed as:

Σ = BΛB′ +Ψ (4)

where

• Σ is the covariance matrix of X.

• Λ is a diagonal matrix containing the variances of the common factors.

• Ψ is a diagonal matrix containing the variances of the idiosyncratic factors.

If the factors are assumed to completely explain the relationships between the assets Ψ and
U can be assumed to be zero.

5 Results

The impact of the covariance measures are measured through their impact of portfolio return. The
time series of portfolio returns for the N asset universe show that the impact on return from the
covariance measures are small relative to the overall market movements, as in Figure 1.
Analysing aggregate returns for all covariance measures and asset universe in Table 1 shows that
despite returns being highly correlated between the covariance measures, there are significant dif-
ferences between aggregate returns for a given asset universe.

Method 3 5 10 20 30 40
sample covariance matrix 201.4 201.4 197.8 102.0 156.5 205.3
diagonal covariance matrix 184.7 144.4 119.3 101.5 133.7 140.3
constant correlation estimator 191.3 196.4 180.8 93.0 159.5 200.5
simple shrinkage estimator 192.2 187.3 161.1 110.8 184.8 213.5
constant correlation shrinkage estimator 196.2 198.9 190.0 97.0 163.6 210.6
ledoit-wolf shrinkage estimator 202.0 202.0 195.7 107.2 161.9 208.5
oracle approximating shrinkage estimator 201.7 201.7 197.1 105.6 158.8 207.6

Table 1: Aggregate returns by covariance measure, for each asset universe size, percent

Comparing aggregate returns to the sample covariance baseline provides the following insights:

• The Ledoit-Wolf shrinkage estimator provides superior performance over almost all asset
universe sizes.

• The simplified diagonal and constant correlation estimators do not provide increased perfor-
mance.
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Figure 1: Portfolio value over 4 years for the 20 asset universe, by covariance measure

• When combined with the sample covariance matrix through shrinkage, the diagonal and
constant correlation estimators provide better performance when the number of assets is
high.

• All shrinkage estimators provide better performance on average when the number of assets
is larger. This could be due to the error in the sample covariance matrix increasing with the
number of assets, leading to larger gains through the error reduction that shrinkage provides

The relative performance of each covariance estimator compared to the sample covariance matrix
can be seen in the time series of the difference in portfolio values between each measure and the
sample covariance matrix in Figure 3 and Figure 2. The time series show how each covariance
estimator performed well or poorly with fairly high consistency over the simulation.

The consistency of over or under-performance of each covariance estimator can be explored further
by looking at the proportion of simulation time steps or investing decisions where each measure
outperformed the sample covariance matrix, as in Table 2. This analysis shows that the Ledoit-
Wolf and Oracle estimators outperformed the baseline in the majority of the decisions, over all
asset universe sizes. The simple shrinkage estimator and the constant correlation estimator were
less consistent and as in the aggregate returns analysis performed better on larger asset universe
sizes.
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Figure 2: Increase in portfolio value compared to the sample covariance matrix baseline, 20 assets

Method 3 5 10 20 30 40
diagonal covariance matrix 48.4 35.9 35.9 51.6 48.4 45.3
constant correlation estimator 51.6 45.3 46.9 46.9 50.0 53.1
simple shrinkage estimator 48.4 37.5 35.9 50.0 62.5 51.6
constant correlation shrinkage estimator 50.0 50.0 46.9 48.4 50.0 53.1
ledoit wolf shrinkage estimator 57.8 57.8 50.0 64.1 62.5 56.2
oracle approximating shrinkage estimator 57.8 57.8 51.6 62.5 62.5 57.8

Table 2: Proportion of periods where returns were better than the sample covariance matrix,
percent. Values over 50 show out-performance

6 Conclusions

6.1 Findings

There are a number of simple conclusions that can be drawn from these limited results, in the
context of the usage of the covariance matrix in portfolio optimisation:

Sample covariance is usually inferior: The sample covariance matrix generally provided worse
performance than the shrinkage estimators.

Shrinkage targets alone are not effective: The shrinkage targets themselves, the diagonal and
constant correlation matrices, did not provide reliable benefits over the sample covariance
matrix

Ledoit-Wolf and oracle estimators are effective: Ledoit-Wolf and oracle estimators provided
fairly consistent out performance compared to the sample covariance matrix.
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Figure 3: Increase in portfolio value compared to the sample covariance matrix baseline, 30 assets

6.2 Areas for further research

Factor Models Comparing the factor model covariance matrix to the estimators explored here.

Multi-asset cases Asset allocation over many asset classes provides a similar portfolio optimi-
sation use case, but with an increase importance on estimating negative correlations, for
example between equities and bonds. This will likely lead to measures such as the constant
correlation estimator to significantly under-perform.

Other use cases Covariance matrices are used in many other applications outside of portfolio
optimisation, which provide other avenues to investigate the impact of using different estima-
tors.
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