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Summary

This paper focuses on the estimation of return volatility and addresses challenges that arise
where the frequency of available data is shorter than the desired return horizon. A range of
estimators are described and evaluated. The evaluation employs both synthetic data, generated
to mimic specific data-generating processes, and real-world data from equities. The synthetic
data analysis reveals that the log return method, when returns are independent and identically
distributed (IID), provides an unbiased estimator with lower variance than other methods.
However, in the presence of serial correlation and momentum, the log return method is biased,
requiring correction for autocorrelation. Simpler approaches, such as resampling to a yearly
frequency or using rolling annual returns, perform well across various scenarios and do not
require assumptions on how returns are generated, making them more robust estimators.

1 Introduction

Estimation of return volatility is a foundational task in quantitative finance, with volatility being
used as in input in CAPM modelling, portfolio optimisation and risk management models, among
other use cases. When volatility is defined as the standard deviation of returns, its estimation seems
trivial: Given a time series of returns, simply calculate the standard deviation. This is complicated
by two questions:

What return horizon matters: For many tasks, such as portfolio optimisation, we really care
about longer term returns. For other tasks, such as risk management, we may be more
concerned with shorter term returns. The selection of return horizon is a important step.

How to best use all available data: If your data is reported at a shorter period than the return
horizon, how can you use the higher frequency data to get better estimates than resampling
at the return frequency?
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2 Estimators

This analysis assumes that annual volatility is the estimate of interest, but these methods could be
applied to any case where the frequency of interest is longer than the frequency of available data.

2.1 Multiply by squareroot of periods per year

This is the commonly quoted method which appears on most forums and websites, which seems
useful as it uses all of the available data to estimate volatility, before converting to an annual
figure. Where there are p return periods observed per year, we can calculate annual volatility with
Equation 1.

σannual =
√
pσp (1)

For example, to convert monthly return volatility to annual we would use Equation 2

σannual =
√
12σmonthly (2)

This method uses the properties of the variance estimator, which states that given n independent
and identically distributed (IID) random variables with variance σp, the variance of their sum is
given by Equation 3

σ2
annual = pσ2

p (3)

This makes the assumption that returns for each year are given as the sum of returns in each period,
which implies that returns in each period are not reinvested and do not compound. For most use
cases this is an incorrect assumption.

2.2 Log return method

The equation in Equation 3 can be used while preserving the effects of compounding if log returns
are used, as log returns are compounded through addition rather than multiplication. This method
requires the following steps:

1. Convert returns to log returns: ln(Pt/Pt−1) where Pt is the price or index level at time t

2. Compute the mean µlp and variance σ2
lp of the log returns

3. Calculate mean annual log return as µ = pµlp and the annual log variance as σ2 = pσ2
lp.

4. Convert from log returns using Equation 4, which the the equation for the standard deviation
of a log-normal distribution.

σ = eµ+0.5σ2
√

eσ2 − 1 (4)

Similar to the previous method, this assumes that the monthly log returns are IID.
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2.3 Log return method with serial correlation

We can relax the IID assumption to allow for serial correlation between the period’s returns. This
requires the variance of the annual log returns to be adjusted for autocorrelation before conversion
using Equation 6, as described by Lo, 2002.

Rt(q) =

q−1∑
k=1

Rt (5)

Where Rt are the log returns for a single period, Rt(q) is the log returns for q periods. Given σ2 is
the variance of returns and pk is the correlation between returns at a lag of k.

V AR(R(q)) = qσ2 + 2σ2

q−1∑
k=1

(q − k)pk (6)

Its worth noting that V AR(R(q)) can also be computed as the sum of the covariance matrix between
Rt and its q lags.

2.4 Resample to return period

All of the methods described so far use assumptions regarding the nature of how return are gener-
ated and combined over time to map from the high frequency measurement of volatility to annual
volatility. When these assumptions are incorrect, for example when returns are not IID, the estima-
tors can perform poorly. A simpler approach which places no assumptions on the data generating
process is to simply resample the price or index data at a yearly frequency to compute volatility.

2.5 Rolling return

Simply resampling to the return period can seem unwise, as it throws away observations that
we seemingly should be able to use to compute a better estimate. One method to still compute
annual returns but use all available data is to compute the rolling annual returns, then compute
the volatility of this series.

Rt =
Pt

Pt−p
− 1 (7)

The issue with this method is that each successive return is tightly coupled to the previous return,
containing many of the same time periods, which we would expect to cause the series of rolling
returns to contain a high degree of serial correlation and not much additional information when
compared to the simpler approach of resampling at a yearly frequency.

2.6 Bootstrapped annual returns

Another tempting method is to bootstrap annual returns by randomly sampling from the period
level returns to construct a larger sample of annual returns. This suffers the same flaws as the log
return method, as it assumes that returns in each observed period are IID. When evaluating this
method, random sampling without replacement is used, generating a sample size that is 10 times
the size of the input sample.
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3 Evaluation approaches

We can test these estimators through two methods:

Synthetic data: Testing on generated data that follows a specific data generating process, to test
how the estimators perform when returns both are and aren’t IID.

Real world data: Test the ability for these estimators to predict out-of-sample volatility on real
world series where the data generating process is unknown.

4 Synthetic data evaluation

4.1 Methodology

The following Monte Carlo method is used to evaluate each estimator on synthetic data:

1. A extremely long series of asset prices is generated that follows a specific data generating
process of interest

2. The full series is resampled at a yearly frequency, non-overlapping yearly returns are computed
and the ”true” volatility is estimated from this series. This will act as the target that each
estimator is evaluated against.

3. A small subset of observations from the start of the series is extracted, and each estimator is
used to compute the volatility of this series.

4. This process is repeated for a number of trials, allowing the bias and variance of each return
volatility estimator to be measured.

4.2 Results on IID returns

As a simple first case, asset prices are generated where returns for each observation period are IID,
as in Equation 8 where Rt ∼ N(µ, σ2).

Pt = Pt−1(1 +Rt) (8)

An example of one of the series generated is given by Figure 1.
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Figure 1: Data generated at a monthly frequency with monthly returns Rt ∼ N(3%, 5%2). First
500 periods shown in raw units, log units and return

The results in Table 1 show that the simple method of multiplying monthly volatility by the square
root of 12 provides results that are biased towards zero. As the IID assumption is true, the remaining
methods provide similar and unbiased results. Notably the log returns and bootstrapped methods
provide lower estimator variance, with half the standard deviation of the remaining measures.

Method Average vol Mean error Mean absolute error Error stdev
multiply by sqrt frequency 0.17258 -0.06871 0.06871 0.00875
log returns 0.24532 0.00404 0.01256 0.01516
log returns with autocorrelation 0.23116 -0.01013 0.02873 0.03422
resample at yearly freq 0.22928 -0.012 0.0362 0.04435
rolling annual returns 0.2304 -0.01089 0.02894 0.03397
bootstrapped returns 0.23429 -0.00699 0.01397 0.01585

Table 1: Error on independent returns series. Data generated at a monthly frequency with monthly
returns Rt ∼ N(3%, 5%2). 20000 periods generated, 240 (20y) used to estimate volatility. 1000
trials generated.

The correlation in error between estimators is shown in Table 2. As expected, the errors in the
yearly resampled method and rolling annual returns method are highly correlated, with a correlation
of 0.81, showing that there may be limited benefit to using rolling returns over simply resampling
to a yearly frequency.
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Method mult.. log .. log .. resa.. roll.. boot..
multiply by sqrt frequency 1.0 0.78 0.3 0.21 0.31 0.62
log returns 0.78 1.0 0.35 0.29 0.36 0.8
log returns with autocorrelation 0.3 0.35 1.0 0.81 0.97 0.25
resample at yearly freq 0.21 0.29 0.81 1.0 0.81 0.21
rolling annual returns 0.31 0.36 0.97 0.81 1.0 0.26
bootstrapped returns 0.62 0.8 0.25 0.21 0.26 1.0

Table 2: Correlation between errors for each method on independent returns series. Data generated
at a monthly frequency with monthly returns Rt ∼ N(3%, 5%2). 20000 periods generated, 240 (20y)
used to estimate volatility. 1000 trials generated.

Similar results are found when using a weekly data frequency - See appendix items Table 6 and
Table 7.

4.3 Results on returns with momentum

We can add momentum to the series by generating the returns such that they are positively corre-
lated with returns in previous periods.

Pt = Pt−1(1 +Rt) (9)

Rt = β1Rt−1 + β0 + ϵt (10)

where ϵ ∼ N(0, σ2) and β0 = µ(1− β1) to ensure the average return is kept constant at µ.
An example of one of the series generated is given by Figure 2.

Figure 2: Data generated at a monthly frequency with monthly returns, β1 = 0.7, µ = 0.03, σ = 0.05.
First 500 periods shown in raw units, log units and return

The introduction of non-IID returns results in the simple square-root multiple, log returns and boot-
strap estimators to be biased, as in Table 3. As is implied by Lo, 2002 this bias is negative, resulting
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in an underestimation of volatility in the presence of positive autocorrelation. The log-returns with
autocorrelation compensation estimator performs well, with seemingly unbiased results. Notably,
the simple methods of resampling to a yearly frequency and using rolling annual returns were also
unbiased and had a similar variance to the log-returns with autocorrelation compensation estimator.

Method Average vol Mean error Mean absolute error Error stdev
multiply by sqrt frequency 0.2379 -0.55971 0.55971 0.02964
log returns 0.34021 -0.4574 0.4574 0.05403
log returns with autocorrelation 0.77676 -0.02086 0.14935 0.18443
resample at yearly freq 0.73159 -0.06603 0.16496 0.19254
rolling annual returns 0.73856 -0.05905 0.15191 0.17676
bootstrapped returns 0.32386 -0.47375 0.47375 0.05115

Table 3: Error on returns series with return momentum, β1 = 0.7, µ = 0.03, σ = 0.05. 20000 periods
generated, 240 (20y) used to estimate volatility. 1000 trials generated.

The correlation results in Table 4 show that the presence of serial correlation in returns causes the
simple annual return and rolling annual return methods to be even more highly correlated, with a
correlation of 0.9.

Method mult.. log .. log .. resa.. roll.. boot..
multiply by sqrt frequency 1.0 0.59 0.51 0.39 0.44 0.61
log returns 0.59 1.0 0.74 0.64 0.71 0.96
log returns with autocorrelation 0.51 0.74 1.0 0.8 0.88 0.7
resample at yearly freq 0.39 0.64 0.8 1.0 0.9 0.59
rolling annual returns 0.44 0.71 0.88 0.9 1.0 0.66
bootstrapped returns 0.61 0.96 0.7 0.59 0.66 1.0

Table 4: Correlation between errors for each method on independent returns series. Returns series
generated with return momentum, β1 = 0.7, µ = 0.03, σ = 0.05.. 20000 periods generated, 240
(20y) used to estimate volatility. 1000 trials generated.

5 Real world data

We can also test these methods on real world data, although in a more limited fashion. The method
used takes a history of equity prices and divides it in half. The first half is used by each estimator
to estimate volatility, which can then be compared to the actual volatility in the second half of the
series. This aims to simulate the usage of these estimators in a practical use case, where the goal is
to predict future volatility. 30 years of data from 1993 to 2023 is used, allowing 15y for each of the
subsets. The ”target” volatility in the second half of the series is measured using the resampling at
yearly frequency method, as with the synthetic data.
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series AAPL CL ED DE SPY
target 0.46 0.121 0.142 0.293 0.187
multiply by sqrt frequency 0.5 0.256 0.19 0.305 0.152
log returns 0.711 0.302 0.201 0.386 0.167
log returns with autocorrelation 0.914 0.176 0.194 0.298 0.171
resample at yearly freq 0.85 0.192 0.18 0.328 0.157
rolling annual returns 0.757 0.187 0.188 0.264 0.162
bootstrapped returns 0.734 0.294 0.171 0.343 0.168

Table 5: Volatility predictions for annual returns of a selection of equities for 2008 to 2023, based on
data from 1993 to 2007. Data from Google finance, unadjusted close price, weekly data frequency

The results in Table 5 shows that the estimators are all poor predictors, with significant errors with
all estimators. Interestingly, the simple method of multiplying by the square root of the frequency
does not provide results that are consistently biased downwards as was seen in the synthetic data,
even when comparing against the ”true” annual volatility for the training period (resample at yearly
freq estimator). This suggests that the equity prices tested compound in an additive fashion rather
than multiplicative, which is a topic that deserves separate investigation. This is less likely to be the
case if dividend reinvestment was accounted for. This simple method also had the lowest average
absolute error across the five equities tested.

6 Conclusion

The following conclusions can be made from the observations:

1. Theoretically, the method of using the squareroot of the number of periods per year multiplied
by the standard deviation of returns per period should be the worst estimator, given it relies
on two faulty assumptions: 1) Returns are IID, and; 2) returns add over the year rather than
compound.

2. If the data generative process of the returns is known to give IID returns, using the log-return
method gives an unbiased estimator with lower variance than resampling to yearly returns or
rolling annual returns.

3. If returns are not IID and momentum is present, the log returns method is biased. If the
autocorrelation of returns is positive, this bias will reduce the estimated volatility. This can be
corrected for through accounting for autocorrelation, which will provide an unbiased estimator
in the case of returns with momentum and in the base IID returns case.

4. Simply resampling to a yearly frequency and calculating the standard deviation of returns
performs well and is as good as the log returns methods, except for the special case of IID
returns where the log return method has lower variance. The log return method with auto-
correlation correction does not have this same low variance in the IID case and is no better
than yearly returns.

5. Rolling yearly return volatility is highly correlated with the volatility given by resampling at a
yearly frequency, and this correlation increases when returns are serially correlated. However,
the rolling returns estimator has a slightly lower variance.
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6. When used in a predictive fashion on real data, all estimators preformed poorly. This suggests
non-stationarity in the returns series used and is deserving of additional investigation.

A higher level conclusion is that knowledge of the underlying data generating process of returns can
allow for better estimators to be developed, which are unbiased and have low variance. However,
if the assumptions placed on the data generating process are violated, these estimators can have
a large bias. Simple methods which directly measure the property of interest, which may seems
overly simplistic, provide results that are comparable to these more complex estimators, without
the vulnerabilities that come from placing assumptions on the return distribution.

9



References

Lo, A. W. (2002). The statistics of sharpe ratios. Financial Analysts Journal, 58 (4), 36–52. https:
//doi.org/10.2469/faj.v58.n4.2453

10

https://doi.org/10.2469/faj.v58.n4.2453
https://doi.org/10.2469/faj.v58.n4.2453


7 Appendix

Method Average vol Mean error Mean absolute error Error stdev
multiply by sqrt frequency 0.07205 -0.0256 0.0256 0.00393
log returns 0.09822 0.00057 0.00359 0.00448
log returns with autocorrelation 0.09434 -0.00331 0.01075 0.01285
resample at yearly freq 0.09336 -0.00428 0.01331 0.01615
rolling annual returns 0.09426 -0.00339 0.01067 0.0128
bootstrapped returns 0.09517 -0.00247 0.0052 0.00604

Table 6: Error on independent returns series. Data generated at a weekly frequency with monthly
returns Rt ∼ N(0.6%, 1%2). 20000 periods generated, 1040 (20y) used to estimate volatility. 1000
trials generated.

Method mult.. log .. log .. resa.. roll.. boot..
multiply by sqrt frequency 1.0 0.93 0.14 0.06 0.14 0.69
log returns 0.93 1.0 0.2 0.12 0.2 0.74
log returns with autocorrelation 0.14 0.2 1.0 0.79 0.98 0.14
resample at yearly freq 0.06 0.12 0.79 1.0 0.78 0.07
rolling annual returns 0.14 0.2 0.98 0.78 1.0 0.13
bootstrapped returns 0.69 0.74 0.14 0.07 0.13 1.0

Table 7: Correlation between errors for each method on independent returns series. Data generated
at a monthly frequency with monthly returns Rt ∼ N(0.6%, 1%2). 20000 periods generated, 1040
(20y) used to estimate volatility. 1000 trials generated.
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