
Subsampling leaf variables as an optimisation in Monte-Carlo

simulations

Grant Holtes

November 28, 2023

Summary

This note shows how changing the sampling order in Monte Carlo simulations can signif-
icantly improve performance without materially impacting on the results. The conditions for
this optimisation to be applied are defined and some practical examples are shown to illustrate
the optimisation method.

1 Introduction

An issue with Monte Carlo simulation that draw on a large number of random variables is sparsity
and the large number of samples required to provide adequate coverage of the high dimensional
sample sample space from which values can be drawn, with each additional variable exponentially
increasing the size of the ”search space”.
This issue can be partially addressed by simply making the simulation faster, allowing for more
samples to be taken, filling in the search space. This note covers one approach that I have found
useful, which manipulates the order in which distributions are sampled to reduce simulation runtime.
The random variables in a Monte-Carlo simulation can be divided into 2 groups:

1. Random variables that affect the simulation flow, for example, by determining a logical path
or influencing the simulation state, which I will refer to as ”node” variables

2. Random variables that affect the outcome or result of the simulation but nothing else, which
I will refer to as ”leaf” variables

In most simulations, the majority of the compute time is tied to the ”node” variables and their
interactions with simulation state, while the leaf variables require relatively little compute to have
their affects on the final outcome determined. In this setup, we can reduce latency by pausing the
sampling of node variables while we sample leaf variables, before moving to the next sample of node
variables and repeating the process.

1

Figure 1: Comparison of samples generated by joint sampling compared to the order-optimised
sampling, 2 variable case, 500 samples

2 A Simple Example

Consider a betting process by which the actor flips a coin to determine which of two horses to bet
on. A single iteration of the simulation may involve:

1. Drawing a random variable to determine the coin flip outcome

2. Drawing many random variables to simulate the movement of the horses, decisions of the
jockeys and the outcome of the race.

In this example, the race simulation is complex and affects both the outcome for the actor and the
simulation itself, whereas the coin flip only affects the outcome. Due to this we can first simulate
the race, then divide into two simulations, one for each of the equally likely coin flip outcomes
which we evaluate. This has the effect of increasing our sample size without greatly increasing
the computation required. If the actor rolled a dice or sampled from some other more complex
distribution to determine which horse to back, we could accomplish the same result by sampling
from this distribution a number of times for each simulated race, recording the outcome in each
case.

3 Simulation termination use case

A more complex but useful use case is when a random variable has the effect of terminating the
simulation. Consider a lifetime spending model, where each time period the agent has to determine
how much to consume and how much to invest for their future, with some probability of death
depending on age and other simulation states, with objective being maximisation of total lifetime
consumption.
In this simulation, a true Monte Carlo implementation would be to draw from the death proba-
bility distribution each period (adjusting parameters based on age and state), and terminate the
simulation iteration if the agent dies.
However, the death of the agent can be viewed as a leaf variable in this simulation, with a simple
optimisation being:

1. Simulate the agent to an improbably high age, recording at each timestep the probability of
death conditional on the current simulation state, and the simulation state itself.

2

2. Once the computationally intensive life situation process is complete, quickly iterate through
the time steps and apply the death probability, computing the outcomes of each of these
sub-simulations from the cached simulation state.

As long as an appropriately large number of ”node” level samples are still taken, this should provide
a close approximation for the true Monte Carlo simulation. If the number of node samples is not
large enough, the samples will end up with a ”striped” pattern as in Figure 2.

Figure 2: Comparison of samples generated by joint sampling compared to the order-optimised
sampling, 2 variable case, 500 samples, 20 Node samples

4 Verification

A simple implementation of this example shows that this is the case:
True Monte Carlo implementation:

prob_death = [(1/120)*i for i in range(120)]

def life_simulation_simple(c, n):

c = Consumption rate

outcomes = []

for i in range(n):

alive = True

savings = 100

spent = 0

age = 0

while alive:

spent += c*savings

savings = (1-c)*savings

savings = savings * (1+random.random()/10)

if random.random() < prob_death[age]:

actor dead

outcomes.append(spent)

alive = False

age += 1

return outcomes

3

Leaf variable optimisation implementation:

def life_simulation_opt(c, n, m):

outcomes = []

for i in range(n):

savings = 100

spent = 0

age = 0

death_probs_cache = []

score_cache = []

Sample over node variables

while age < 120:

spent += c*savings

savings = (1-c)*savings

savings = savings * (1+random.random()/10)

death_probs_cache.append(prob_death[age])

score_cache.append(spent)

age += 1

Sample deaths over ages - leaf variable

for j in range(m):

for death_prob, score in zip(death_probs_cache, score_cache):

if random.random() < death_prob:

outcomes.append(score)

break

return outcomes

For a test of 10,000 samples, which for the optimised version was divided into 100 node samples,
each of which has 100 leaf samples, we get the following results with c=0.15:

Metric True Monte Carlo Optimised Monte Carlo Interpretation
Mean result 104.31 104.65 Closer results are better
Variance in score 602.77 602.99 Closer results are better
Execution time (s) 0.0443 0.0180 Lower is better

Table 1: Optimisation verification results

4

	Introduction
	A Simple Example
	Simulation termination use case
	Verification

