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Summary

This note introduces the application of steady state adjustments in time series modeling,
focusing on univariate autoregression (AR) and vector autoregression (VAR) models. It outlines
a three-step process involving model estimation, solving for constant terms based on given
coefficients and steady state assumptions, and subsequently replacing these terms in the model.
The note concludes with an application to a macroeconomic forecasting example, showcasing
a V AR(4, 1) model for U.S. economic variables and visualizing the impact of steady state
assumptions. The provided Python code in the appendix details the implementation of the
adjustments in the steady state.

1 Introduction

When applying time series modelling, it may be required to adjust the steady state of the model to
reflect known properties of the system or to apply assumptions on how the steady state will change.
For example, consider a model that predicts oil prices and GDP figures for various nations. To
test the impact of the gradual increase in oil price from the current state to a assumed value, the
practitioner needs to ensure that the price of oil will converge to a given value, while preserving the
interactions in the model.

As explored in the following sections, this can be achieved by replacing the constant term in the
autoregression model. The basic methodology used is:

1. Estimate the model

2. Given the coefficients on the lags of the variable(s) and the required steady state, solve for
the required constant term(s).

3. Replace the constant term(s) in the model with the new estimated ones.

This is shown for the univariate autoregression, AR(m), and full vector autoregression, V AR(n,m),
cases.

A more statistically rigorous method to achieve a similar expression of priors in a time series
models is to use a Bayesian VAR model (BVAR), as described by Wozniak, 2021 and as applied by
Louzis, 2015. The application of BVAR models is beyond the scope of this note.
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2 Univariate autoregression

The most basic case is a AR(1) model, where only one variable is predicted and one lag is used, as
defined in Equation 1, where ϵt ∼ N(0, σ2).

xt = β0 + β1xt−1 + ϵt (1)

In the steady state, xt = xt−1 = x∗,

x∗ = β0 + β1x
∗ (2)

β0 = (1− β1)x
∗ (3)

Given a steady state, x∗, Equation 3 can be used to determine the required constant term. This
can be expanded for the case of m lags, as in Equation 6

xt = β0 +

m∑
k=1

βkxt−k + ϵt (4)

x∗ = β0 +

m∑
k=1

βkx
∗ (5)

β0 = (1−
m∑

k=1

βk)x
∗ (6)

3 Vector autoregression

The method used to derive the constant term for the AR(m) case can also be applied to the case of
V AR(n,m) models. The simpler V AR(n, 1) case is explored first, where n variables are predicted
using one lag of all variables, as in Equation 7.

xt = β0 + β1xt−1 + ϵt (7)

Where:

• xt is a (n, 1) column vector of variables at time t.

• β0 is a (n, 1) column vector of constants

• ϵt is a (n, 1) column vector of random variables, ∼ N(0, σ2
n)

• β1 is a (n, n) matrix of coefficients that describe the relationships between the variables.

Again we can define the steady state as the case where xt = xt−1 = x∗.

x∗ = β0 + β1x
∗ (8)

β0 = (I− β1)x
∗ (9)
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Where I is the (n, n) identity matrix.

This can be extended for the m lag case, as in Equation 11.

xt = β0 +

m∑
k=1

βkxt−k + ϵt (10)

β0 = (I−
m∑

k=1

βk)x
∗ (11)

4 Application to macroeconomic forecasts

This approach is shown in the simple example of a V AR(n, 1) model on some common macroeco-
nomic variables: real GDP growth, unemployment, inflation, and interest rate. The model graphed
in Figure 1 is the 100 month forecast of these variables from July 2017.

Figure 1: VAR(4,1) model of core macroeconomic variables for the US economy. Data from FRED,
n.d.

As is shown in Figure 1, the series revert to their sample means in the steady state. Consider the
case that instead that the following steady state assumptions were made and the constant term
vector was adjusted as in Equation 9:

Real GDP growth: 1%

Inflation: 2%

Interest rate: 3.5%

Unemployment rate: 5%
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This results in the forecast in Figure 2, which shows that the series now converge to these new
steady states, but exhibit the same short run interactions and mean reversion properties as the
original unmodified model.

Figure 2: VAR(4,1) model of core macroeconomic variables for the US economy, with steady state
assumptions. Data from FRED, n.d.

Code for the adjustment is given in the appendix.
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5 Code

Python code used is given below.

5.1 VAR model

def VAR_1(df):

Xt_1 = df.shift(1)[1:] # Lag of 1

Xt_0 = df.iloc[1:] # Lag of 0

# explantaory vars + const

X = np.concatenate([np.ones((Xt_1.shape[0],1)), Xt_1], axis=1)

Y = np.array(Xt_0)

B, _, _, _ = np.linalg.lstsq(X,Y)

beta_0 = B[0,:]

beta_1 = B[1:,:]

return beta_0, beta_1

5.2 Steady state adjustment

def adjust_beta_0(beta_0, beta_1, steady_state_target):

# Find implied steady states at t=inf, where Xt = Xt-1

# X = X @ beta_1 + beta_0

# X @ I - X @ beta_1 = beta_0

# X @ (I - beta_1) = beta_0

# X = beta_0 @ (I - beta_1)’

I = np.identity(beta_1.shape[0])

implied_steady_states = beta_0 @ np.linalg.inv(I - beta_1)

# If the steady state is not provided, use existing steady state

for i, m in enumerate(steady_state_target):

if m == None:

steady_state_target[i] = implied_steady_states[i]

# XT = XT @ beta_1 + beta_0T

# beta_0T = XT - XT @ beta_1

# beta_0T = XT @ I - XT @ beta_1

# beta_0T = XT @ (I - beta_1)

n = beta_1.shape[0]

beta_0_a = steady_state_target @ (np.identity(n) - beta_1)

return beta_0_a
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