
Impact of covariance matrix estimator choice on yield curve

decomposition with PCA

Grant Holtes

November 26, 2023

Summary

This investigation evaluates the impact of different covariance matrix estimation methods
when used as an input for principle component analysis in the context of yield curve decompo-
sition, focusing on the economic interpretations of Level, Slope, and Curvature components. It
was found that the constant correlation shrinkage estimator consistently outperforms others,
including the sample covariance matrix. The investigation also reveals that short time periods
yield less reliable results, with the issue attributed to the length of time sampled rather than
sample sizes.

1 Introduction

The decomposition of yield curves using principle component analysis (PCA) is a common proce-
dure, allowing for yield curve dynamics to be explained in a small number of underlying drivers.
The first three principle components are commonly used and are given economic interpretations as
in Litterman and Scheinkman, 1991 and Kavir Patel, 2018.

Figure 1: US zero coupon bond yield curve reconstructed with 3 component PCA, 12 month time
to maturity series shown
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PC1: Level: The first principle component tends to have equal values across all maturities, so
controls the overall level of the curve.

PC2: Slope: The second component usually has a positive relationship with maturity, which
allows this component to determine the slope of the curve and the bulk of the differences in
yield between short and long maturities.

PC3: Curvature: The third and usually last component tends to determine how bowed the curve
is, leading to it being referred to as curvature.

These three components can be visualised by plotting the loadings on each principle component for
each maturity, the eigenvectors of the covariance matrix, against maturity, as in Figure 2.

Figure 2: Principle component loadings on US zero coupon bond time data, entire data history

The use of PCA to decompose the yield curve into factors with distinct economic interpretations
raises some questions on how the reliability of the decomposition, as the decomposition is com-
pletely informed by historical data.

This question is explored by Rodger Lord, 2007, where the authors investigate the circumstances
under which the economic interpretations are consistent with their Level, Slope and Curvature des-
ignations, concluding that there are some years in which there are no economic interpretations for
the components. While Rodger Lord, 2007 use the shape and sign changes in the eigenvectors to
determine if the economic interpretation is valid, Hou, 2022 uses a comparison against the model
developed by Nelson and Siegel, 1987, which explicitly models the components, to test if the PCA
based components are poorly estimated, also concluding that there are time periods where the
interpretations of the components are inconsistent with their usual interpretations.

This investigation aims to determine impact of the choice of covariance estimator on the estimation
of the principle components of bond yields and whether specific estimators provide more consistency
on historic data.
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2 Approach

Two approaches are explored to quantify how well estimated the principle components are:

Sign change of eigenvectors: This borrows the method and sign change rules used by Rodger
Lord, 2007, which checks if ”first three factors have respectively zero, one and two sign
changes”, in which case the level, slope and curvature are assumed to be estimated in accor-
dance with their economic interpretations. Applying these rules to the results in Figure 2 we
can see that the decomposition is valid

Visual Inspection: Inspection of graphs of eigenvectors against maturity to try find any insights
that may have been missed by either of the other methods.

These approaches are applied to the decomposition of a set of rolling sub-ranges of yields from the
US treasury yields data from the Board of Governors of the Federal Reserve System (Reserve, n.d.).

3 Results

3.1 Eigenvector sign change analysis

The choice of covariance estimator had a small but consistent impact on the reliability of PCA in
generating eigenvectors that are consistent with the sign change assumptions. This can be seen in
Table 1, where the constant correlation shrinkage covariance estimator consistently outperformed
the sample covariance estimator while the simple shrinkage estimator consistently underperformed.

The Ledoit-Wolf estimator performed identically to the sample covariance estimator, suggesting
that the optimiser had (correctly) inferred that there was little to no benefit in shrinkage towards
the diagonal matrix, as in the simple shrinkage estimator.
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months covariance estimator proportion valid
12 constant correlation shrinkage estimator 0.74
12 ledoit wolf shrinkage estimator 0.626
12 sample covariance matrix 0.626
12 simple shrinkage estimator 0.512
24 constant correlation shrinkage estimator 0.893
24 ledoit wolf shrinkage estimator 0.802
24 sample covariance matrix 0.802
24 simple shrinkage estimator 0.678
48 constant correlation shrinkage estimator 0.932
48 ledoit wolf shrinkage estimator 0.897
48 sample covariance matrix 0.897
48 simple shrinkage estimator 0.795
96 constant correlation shrinkage estimator 1.0
96 ledoit wolf shrinkage estimator 0.982
96 sample covariance matrix 0.982
96 simple shrinkage estimator 0.917

Table 1: Proportion of test periods with consistent sign change patterns in the PCA eigenvectors,
by covariance estimator and test period length

The other, more intuitive pattern in Table 1 is that performance across all estimators improved with
longer sample windows, illustrating how the decomposition is unreliable over shorter time frames.
The patterns in the performance of the estimators can also be explored over time, by plotting
whether or not each estimation is valid on a rolling basis through the dataset, as in Figure 3 and
Figure 4. These plots how how the errors in the estimation are highly correlated across estimators
and across sample size ranges, with most of the estimators performing poorly on the same time
periods.

Figure 3: Eigenvector consistency with economic interpretations over time, 24 month rolling window
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Figure 4: Eigenvector consistency with economic interpretations over time, 48 month rolling window

These results raise a question: Is the poor performance on small sample sizes due to the short
time period sampled, or the small number of samples? This can be investigated by re-running
the analysis with the same sample sizes, but with quarterly rather than monthly data, so each
slice contains the same number of observations but three times the elapsed time. Comparing these
quarterly results in Table 2 to the monthly results in Table 1 suggests that the poor performance
on short time windows is largely due to the length of time rather than the number of samples, likely
due to insufficient variation in yields over the shorter periods of one-to-two years to provide the
required information.

quarters covariance estimator proportion valid
12 constant correlation shrinkage estimator 0.85
12 ledoit wolf shrinkage estimator 0.825
12 sample covariance matrix 0.825
12 simple shrinkage estimator 0.65
24 constant correlation shrinkage estimator 0.947
24 ledoit wolf shrinkage estimator 0.895
24 sample covariance matrix 0.895
24 simple shrinkage estimator 0.842

Table 2: Proportion of test periods with consistent sign change patterns in the PCA eigenvectors,
by covariance estimator and test period length

3.2 Visual Inspection

We can use visual inspection to understand the results of the sign change analysis in more detail
and to find other inconsistencies in the PCA results that were not found by the sign change measure.

Figure 5 and Figure 6 show examples of eigenvectors in one of the sample periods that the constant
correlation shrinkage estimator produced valid sign changes but the sample covariance matrix did
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not. We can see that the cause of the issue is the 3 sign changes in the curvature vector in the
sample covariance graph.

Figure 5: Eigenvectors for July 1997 to April
2000, sample covariance estimator, invalid sign
changes

Figure 6: Eigenvectors for July 1997 to April
2000, constant correlation shrinkage covariance,
valid sign changes

We can also see some interesting ways that the eigenvectors can be correct from a sign change
perspective, but lack the properties to make them useful in practice. The sample covariance matrix
tended to produce very flat eigenvectors when estimated on short time spans of data, as in Figure 7.
This lack of structural difference between the eigenvectors after the first few months of maturity
limits their usefulness, as they suggest near equal impacts from the principle components on medium
and long term bonds.

Figure 7: Eigenvectors for August 1963 to August 1964, , sample covariance estimator. Sign changes
suggest a correctly estimated set of eigenvectors, but produce very flat and unhelpful curves.
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4 Conclusion

The main findings are:

Decompositions are unreliable over short periods: Short time periods do not provide the
required information to estimate the principle component loadings reliably.

Time period matters more than samples: Poor results over short time periods seem attributable
to a lack of time, rather than the small sample sizes. The same small sample sizes spread over
a longer period performed much better, and practically as well as more frequent samples over
the same longer period.

The constant correlation shrinkage estimator performs well: The constant correlation shrink-
age estimator consistently outperformed the other estimators, including the sample covariance
matrix.

The simple shrinkage estimator performs poorly: The simple shrinkage estimator consistently
underperformed the sample covariance matrix. This lead to other estimators such as the
Ledoit-Wolf estimator, which also shrinks between the sample and diagonal matrix, to pre-
form poorly as well, with limited shrinkage benefits.

7



References

Hou, K. (2022). Inference for model misspecification in interest rate term structure using functional
principal component analysis.

Kavir Patel, G. W. v. V., Ashfaaq Mohamed. (2018). A regression and comparative study of united
states and south african yield curves using principal component analysis. South African
Journal of Economic and Management Sciences, 1–15.

Litterman, R., & Scheinkman, J. (1991). Common factors affecting bond returns. Journal of fixed
income.

Nelson, C. R., & Siegel, A. F. (1987). Parsimonious modeling of yield curves. Journal of business,
473–489.

Reserve, F. (n.d.). Yield curve models and data [Data in CSV format].
Rodger Lord, A. P. (2007). Level–slope–curvature – fact or artefact? Applied Mathematical Finance.

8


	Introduction
	Approach
	Results
	Eigenvector sign change analysis
	Visual Inspection

	Conclusion

